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By choosing a suitable linear combination of the constants of the motion H;, it is
shown that the calculation of the density matrix p(¢) can be simplified by subdividing the
Hamiltonian H into (H; + H3). In particular, this technique can be used to obtain closed
form solutions for the eigenfunctions and eigenvalues of spin 1/2 ABC and XBCD spin
systems, evolving in the presence of Zeeman offsets, scalar coupling and dipolar interac-
tions. In general, the eigenvalues and eigenvalues of H; are very transparent, while those
of H, require more effort. Nevertheless, simplifications can be made. Firstly, the effec-
tive size of the Hamiltonian matrix H, which needs to be considered, is reduced from
N x N to at least (N —2)x (N —2), while for XBC... systems it is reduced to
(N — 4) x (N — 4). Secondly, the highest rank and highest/lowest order tensor operators
available to the spin ensemble are constants of the motion under H,. Finally, by exploit-
ing the fact that 7, is a good quantum number, it is possible to block-diagonalize the Ha
matrix into nomore than 3 x 3 matrices.

1. Introduction

The complexity of the mathematics required to describe the evolution of nuclear
ensembles, increases rapidly with the number of interacting nuclei [1-5]. Thus it is
helpful to seek ways of simplifying the algebra required for coupled spin 1/2 nuclei
evolving in the presence of Zeeman offsets, dipole-dipole interactions, and scalar
coupling. A step in this direction has been made by [6]. In a paper on the product
operator description of 4B and ABX spin systems, it was shown that the calcula-
tion of the time dependent density matrix p(¢) can be simplified, by subdividing the
Hamiltonian into the form H = H; + H,, where H; and H, commute. In such
cases, the time evolution of the density matrix can be factorised as

p(l) —_ e—iHl/hp(O)e+17-tt/Fi

— p—iHat/h [e—iﬂlt/hp(())eq-ﬂ-llt/h} ettt/ (1)

enabling the calculation of the density matrix p(¢) to be carried out in two separate
steps rather than one. In practice, this approach is useful because (i) it allows the
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identification of “‘constants of the motion”, under H, and H, taken separately,
and (ii) the eigenvalues and eigenfunctions of H; and H; are often less complicated
than those of H.

In this paper, an optimal subdivision of H into H; and H,, for ABC, XBC,
ABCD, and XBCD, etc., spin 1/2 spin systems is presented and discussed. In
essence, H; is chosen to be a suitable linear combination of the constants of the
motion of the Hamiltonian H. It is demonstrated that (i) in the Zeeman representa-
tion, H; is pure diagonal, and (ii) the effective size of the non-diagonal H, matrix is
reduced from N x N to at least (N — 2) x (N — 2). In addition, it is shown that
even the (N — 2) x (N — 2) H, matrix can be block diagonalized into still smaller
sub-matrices, using the fact that J, (=4, + B, + C; +...) is a good quantum
number.

The structure of papers I and I1 is as follows. In this paper, the emphasis is placed
on (i) the optimal subdivision of H into H; + Hj, (ii) identification of constants of
the motion, and (iii) block-diagonalization. In the following paper II, it is shown
that it is possible to determine the evolution of high order multipolar states, without
the need to diagonalize the full Hamiltonian H. Both papers I and II can be seen as
extensions of the work initiated in [6], to deal with higher numbers of multiply con-
nected spin-1/2 systems.

2. General considerations

To obtain explicit forms for the time dependence of the density matrix p(¢) of
(1), it is necessary to choose a suitable basis set of operators [7]. In practice, there
are several sets of operators that can be used for coupled spin-systems: Cartesian
product operators [8], concatenated tensor operators [9], and unit spherical tensor
operators [10]. For our purposes, we shall use the concatenated set of [9,10],
denoted by T’é(k). Here A and Q denote the rank and order of the operator, while k
represents the spin-coupling scheme. Thus the term inside the square brackets of
(1), can be rewritten in the form

p1 (t) — e—-ﬂ‘{xl/fr -H'Hnt/fi ZZpQ(k T)\ (2)

In the energy representation, it is easily shown that the time dependent Fano
coefficients [7] pp (k, 7) are given by

Pk, 1) = Tr[(Ty) T u (9]
= (nl(T(k )T m) (mlp(0) m) =B B/, (3)

Consequently, given the eigenvalues and eigenfunctions of H,, it is a relatively
straightforward matter to determine the Fano coefficients and so arrive at an expli-
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cit form for p;(¢). Once this has been done, the full density matrix p(f) can be
obtained, this time using the eigenvalues and eigenfunctions of H;:

P(t) — e—‘mzl/hpl (t)e‘f‘mzl/ﬁ . (4)

Thus the key to the calculation of the density matrix p(¢) lies in the determination
of eigenvalues and eigenvectors of H; and H,.

3. A three spin 1/2 scalar coupled 4 BC spin system

First, we observe that if [H;, H,]_ =0, it follows that both [H,H;]_ = 0 and
[H,H2]_ = 0. Thus in order to construct a reasonable choice for say H; we seek the
constants of the motion for the Hamiltonian .

Consider a general ABC scalar coupled spin 1/2 spin system. In the decoupled
representation, the Hamiltonian can be written in the form

H = h[AwAAz + AwgB, + AUJCCZ] +J4pA -B+J4cA-C+JpceB-C. (5)
For such a Hamiltonian, it is easily shown that
[A2+B2+C27H]_= [jz,H]._: 01 (6)

i.e. the total projection of the angular momentum along the z-axis 7, is conserved.
Further, given (6) it is easy to show that [7? is also a constant of the motion.
Consequently,

[(T3H]_ = [(Az +B.+C,)% H]
=[(A;B;+ A.;C;+B,C,),H|_=0, 7

where we have made use of the fact that (A2 + B2 + C?) = 3/4 for spin 1/2 nuclei.
Thus we have now identified two constants of the motion (6) and (7). This suggests
therefore that we set

H) = H[AG(A; + B, + C,)] + J(A;B, + A,C, + B,C,), (8)
where (1)

Aw = HAw, + Awp + Awc] %
and (i1)

J=4Jus+ Jac+Jac]. (10)

With this choice of H; therefore
Hy = h[(AwA — ALT))AZ + (AQ)B - ACD)BZ + (ch — A(D)CZ]
-+ (]ABA -B - jAsz) -+ (JAcA -C - jAzCz) + (chB -C - szCz) .
(11)
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Note that in choosing H; we have been driven by the idea that H; should contain
the dominant terms in the Hamiltonian: i.e., H; > Hs.

In the Zeeman representation H, is diagonal, so the calculation of the density
matrix p;(¢) inside the square brackets of (1), presents no difficulties. On the other
hand, the calculation of the eigenfunctions and the eigenvalues of H; is more com-
plicated. Using the labelling scheme and definitions set out in Table 1, we find

1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0
0 a+ Aw J5c 0 e 0 0 0
0 B b+ Aw, 0 ' B 0 0 0
Ha/h = 0 0 0 ¢ — Aws 0 "B Je 0 (12)
0 ‘c ' B 0 ¢+ Auws 0 0 0
0 0 0 B 0 b— Aw, Jsc 0
0 0 0 'c 0 e a—Aw 0
0 0 0 0 0 0 0 0

Note that the first and last entries along the diagonal in H; are zero. For such
entries, the projections of 4,, B,, and C, are all identical, and so both the diagonal
Zeeman and scalar coupling terms vanish identically. This is also true of all the
entries in the first and last rows, and the first and last columns, since entries in these
positions would correspond to spin-flips which do not conserve 7,. Thus two eigen-
values of H; are identically equal to zero, and the effective size of the Hamiltonian
has been reduced from 8 x 8 to 6 x 6. This observation is readily generalized to
ABCD, ABCDE, etc., spin 1/2 systems. If the dimensions of Hare N x N, the effec-
tive size of H; is reduced to (N — 2) x (N — 2), which allows us to draw a general
conclusion. The highest rank tensor K with the highest/lowest order Q = +K isa
constant of the motion under H,. For the 4 BC spin system, this would correspond
to the operators A, B, C, and A_B_C_, which have sole entries in the matrix posi-
tions (1,8) and (8,1), respectively.

Further progress can be made by relabeling the rows and columns of (12), to

Table 1
Labelling scheme and definitions used in H, of eq. (12) for the ABC spin system.

g='%'[JAB—J]/h; bz%[.f,{c-—j]/ﬁ; C=%[ch~.]]/h
J=3Uap+Jac+JIpcl; J' =J/(2R)

a+b+c=0

Awy = (AT — Awc); Awy = (Aw— Awp); Dws = (AD — Awy)
Aw = %[Awd + Awp + Awcg]; Awp+ Awr + Awy =0

Labelling scheme: |4,B,C,),1.e.
M =1+3+3 43, D=1+3+5 -3, Bi=]+; -5 +3)ete
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highlight the fact that 7, is a good quantum number. Thus (12) is transformed to

Je=32 1/2 | —1/2 ~3/2

1 2 3 5 [7 6 }4 8

0 0 0 0 0 0 0 0

0 a+ Aw Jsc Jhe 0 0 0 0

0 se  b+Dw T4y 0 0 0 0
sgi—|0 i Ty c+Aws 0 0 0 0
0 0 0 0 a— Aw Jse Jye 0

0 0 0 0 te  b—Dw, T 0

0 0 0 0 ‘e T c—Aw 0

0 0 0 0 0 0 0 0

(13)

which is now block diagonal with just two 3 x 3 matrices down the diagonal. Note
that the two 3 x 3 matrices in (13) are simply related to each other in that the
Zeeman terms change sign on going from 7, = +1/2to —1/2.

We are now in a position to make two more observations. One, since H; is block
diagonal in 7, evolution under H; (and H,) cannot change the order Q of a given
tensor operator TX(k). For example, operators with Q = +2 can only evolve
between T3, (k) and T2, (k) multipolar states. Two, since the dimensions of the lar-
gest matrix appearing in (13) is only 3 x 3, closed form expressions for the eigenva-
lues and eigenfunctions of H, are guaranteed. Note also that the trace of each of the
two 3 x 3 matrices appearing in (13) is zero. In general, the 3 x 3 matrices take the
form

a A B
M=|4 C , (14)
B C —(a+p)
which possesses the characteristic equation
M-y +e=0, (15)
where
7 =4+ B+ C*) + (o’ + B + )],

e = [(aC? + BB?) + (a + B)(af — 4?) — 24BC). (16)

Thus standard methods can be used to obtain the eigenvalues, and hence the eigen-
vectors. Of course, further simplifications can be made for 4 B? type spin systems,
and a simple example is discussed below in the section 7.



358 G.J. Bowden, T. Heseltine / Coupled spin 1/2 systems. I

Finally, we remark that the above treatment can be used to discuss the A BX sys-
tem. This can be achieved by setting C equal to X and the off-diagonal terms J/, -
and J in (12) equal to zero. For such systems therefore it is only necessary to diag-
onalize two 2 x 2 matrices. However, as noted by [6] there is a better way of tackling
the ABX spin problem.

The ABX Hamiltonian can be divided into H; and H;, where (1)

H, = h[AG)AB(AZ + Bz) + waxz] + J48A.B; + jx(Az -+ BZ)XZ , (17)
(i1)
Hy = h[(AU._)A — A(.UAB)AZ + (Au)g — A(DAB)BZ]
+JAB(A-B —AZBZ) +(5.7x(Az —BZ)XZ (18)
and (ii1)

Jo=YJux +Jpx); 61x =3(Jax —Jax); Awap=j3[Aws+ Awg]. (19)

Note that in writing (17) and (18), the off-diagonal terms in A - X and B - X have
been dropped because such flip-flop terms do not conserve energy and are therefore
strongly suppressed. With this approximation therefore, both (4. + B;) and X,
taken separately, are good quantum numbers. In practice, of course, both
approaches must lead ultimately to the same results. However, for the ABX spin
system, the sub-division of (17) and (18) is optimal because H; more closely reflects
the dominant terms in the 4 BX Hamiltonian.

4. A four spin 1/2 scalar coupled ABCD spin system

Having made reasonable progress with the three spin 1/2 problem, it is natural
to enquire how much further can we go. For the ABCD four spin assembly, the rele-
vant H and H; are given by

H =hlAwsA; + AwpB; + AwcC; + AwpD;)|
+(JABA'B+JACA'C+JADA'D+JB(‘;B-C+JBDB'D+JCDC-D)
(20)
and
H, = h[AG(A; + B, + C, + D,)]
+J(A.B,;+A,C,+A,D,+B,C,+B,D, +C.D,). (21)

Once again, H; is diagonal and presents no real difficulties. On the other hand, H,
contains both diagonal and off-diagonal terms. In block diagonal form we find
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J.=1
| —
2 3 5 9
a+ Aw, cp Jp Jup
Hy/h = cD b+ Awy Jsc Jye
BD Bc  d+DBuws Ty
4D Juc Jig g+ Aw
J.=-1
| |
15 14 12 8
a—Aw Jep JBp J4p
@ iCD b "/sz Tac %c
BD BC d — Awy T4z
4D e Jup g — Auw;
J:=0
l ]
4 6 7 13 11 10
ct+Bws  Jpe BD 0 4D Tic
pc e+ Duws e Tip 0 T4
®| Jzp ep f+Aws Tye 4B 0 (22)
0 4D Juc ¢ — Aws Jac BD
4D 0 Jup Jc e — Aws Jep
e 45 0 BD Jep J = Auwg

Thus H, is block diagonal in .7, consisting of two 4 x 4, one 6 x 6, and two null
1 x 1 matrices 7, = +2 (not shown). The definitions of the terms q, b, ¢, etc., and
symmetries, are summarized in Table 2. Note that the definitions of the coefficients
a, b, c etc., for the ABCD spin system (Table 2) differ from those of the ABC spin
system (Table 1).

Clearly, this method can be extended to deal with higher numbers of connected
spins. For example, for five spins the (N — 2) x (N — 2) Hamiltonian matrix H; is
reduced to two 5 x 5 and two 10 x 10 matrices, while for a six-spin system, H; is
reduced to two 6 x 6,two 15 x 15, and one 20 x 20 matrices. It is obvious therefore
that the required mathematics increases steeply as more spins are added to the
nuclear ensemble. In fact, for spins in excess of say 20, one is forced to resort to sta-
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Table2

Definitions and symmetries for H, of eq. (22) for the ABCD spin system.
ah = =37 +3[Jag+Jac +Jpc); bhi= =37 +1Jap + Jap + Jap)
ch = {-l—%[.f,m +Jep); dhi=-37 + [J,,c +Jap +Jcp)
ehi = Jj‘iU4C+JBD] fh——J-{— [JAD+ch]

gh= —%J%' Wac + Jap + Jcp)

J=1iy AB+JAc+JAD+JBc+JBD+JCD]
a+b+d+g 0

ct+e+f=0

Ao = % [Aws + Awp + Awe + Awp)

Aw) = (AL — Awp); ADw;y = (A(D - Aw(;)

Aws = 2A0 — (ch + Awp); Awy = (A(D - Awg)
Aws = 2A0 — (Awg + Awp);  Awg = 2A0 ~ (Awg + Awc)
Awy = (AL — Awy)

Aw1 -+ sz + Aw4 + Aw') =0

Aws + Aws + Awg = 2(Awy — AD)

tistical methods, as discussed, for example, by [11]. However, if one or more of the
spins are X-spins, the mathematics simplifies considerably. For example, in the
XBCD system, all the off-diagonal terms J/,zJ',~ and J%, in (21) can be placed
equal to zero, and H; is reduced, essentially, to four 3 x 3 matrices. Thus analytical
solutions in closed form are guaranteed. However, as noted earlier, it is better from
the onset, to assume that the projections (B, + C, + D,) and X, along the By mag-
netic field are good quantum numbers, as discussed in the next section.

5. A four spin 1/2 scalar coupled XBCD spin system

For ease of comparison with the ABCD spin system, we set 4 equal to X, and
write H; in the form

Hi = h[AG(B; + C; + D,) + Aw,X;] + J[B.C, + B,D, + C.D,]

+J:(B; +C, + D,)X, (23)

and
Hy =h[(AwsB; + AwpC, + AweD;) — Ao(B, + C, + D))

+ (JB(;B -C - szCz) + (JBDB -D - szDz) + (JCDC -D - jCZDZ)

+ (JBX - jx)BzXz + (JCX - jx)CzXz + (]DX - jx)DzXz ) (24)
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where the definitions of J and J, can be found in Table 3.
The resultant Hamiltonian for H; is block diagonal, and we find
2 3 5 4 6 7 8
2] a+ Aw ! J;
G 72
Yy c+Aws  Jpe oD
6 Bc e+ Aws co
7 BD o [+ Aws
8 0
(25a)
9 10 11 13 12 14 15
Ha /A 710
Mo/l = f—Duws T Top
—_l) 11 ,CD e—Aw5 ch
73 Jep Joo = Auwy
12 d — Awy J5e Jep
14 Jse b— Aw; Jep
(25b)
Table 3

Definitions and symmetries for H, of eq. (25) for the XBCD spin system.

a’i=%(JBC—Z)—l(JXD—zX); bh=3(Jsp ~ J) =3 (Jxc = Jx)
chi =3 (Jep =) +3 (xs = )i dh=1(Jep —T) =L (Jxe — Tx)
eh=5(Jap = J) +3Uxc = Jx); fh=30sc—J)+3xp—Jx)
J =1sc+Jep + Jep);  Jx =3Uxs+ Jxc + Jxp)
a+b+d=0c+e+f=0

Awy = AG — Awp;
Awy = —(Aw — Awp); Aws = Ab —~ Awgp

Aws = —(AD — Awe);  Aws = —(AD — Awp)
AL = %[Awg + Awe + AQJD}

Awy + Awy + Awg =0;  Aws + Aws + Awg =0

Aw; = Ao — Awe
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where the coefficients a, b, c, etc., are summarized in Table 3. Note that the
Hamiltonian H; of (25a, b) is simpler than that of (22) in that (i) two more eigenva-
lues are identically equal to zero, (i1) the required coefficients have been reduced
from ax~g to ax~f and Aw =~ Aw; to Aw) =~ Aws, (ili) the coefficients
Aw; = Awg are simpler than those for the A BCD spin system, and (iv) the sum rules
of Table 3 are simpler than those of Table 2. Itis also worth noting that the quantum
states |8) and |9), with eigenvalues zero, correspond to (4, + B, + C.) = —3/2 and
(A4; + B: + C.) = +3/2, respectively. Thus the triple quantum operators A_B_C_
and A,.B,C, for the three ABC spins are constants of the motion under H,. In
essence, therefore, the removal of the spin-flop terms X B, etc., has reduced the
problem to that of a BCD spin system.

6. Dipolar coupled spin systems

The method discussed above for scalar coupled spin systems can be easily
adapted to deal with the case of dipolar coupled nuclei in the secular approxima-
tion. For example, consider the 4B spin system, evolving under differing Zeeman
offsets and a dipolar interaction. In this case the Hamiltonian takes the form

H = h[(AwAAZ -+ AwBBZ] + DAB[AZBZ - %(A_’_BM + B+A_)] s (26)
where (1)
A
Dyp = <w(1 — 3cos? 19,“9)> , (27)
4rripg

(i1) 9,4 1s the angle made by r 45 with the z-axis, and (ii1) the large brackets appear-
ing in (27) imply thermal averaging. Thus we see that in the secular approximation
the projection of the angular momentum along the z- axis is conserved. Thus both
(A, + B;)and A,B; are constants of the motion. Note also that the structure of (26)
is very similar to that which applies to the scalar coupled 4B spin system, but with
minor differences. In the Hamiltonian H;, the J45 terms are simply replaced by
D 4p, etc. However, in ‘H; the diagonal J 45 terms are simply replaced by D 43, etc.,
while the off-diagonal J 5 terms in H, must be replaced by replaced by —(D45/2)
etc. Finally, we remark that if necessary it would be possible to deal with mixed sca-
lar and dipole—dipole coupling interactions, simultaneously.

7. A CH; dipolar coupled spin system

As an example of the results described in sections 5 and 6, consider an XBBB spin
system where the dipolar coupling between the three B spins is identical. Thus
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Dpc = Dpp = Dcp =D, Dpy =Dcx =Dpxy =Dy, and Awp= Awc = Awp
= Aw. Thus, the Hamiltonian H; takes the form

Hi =A[Aw(B; + C, + D;) + AwyX;] + D[B.C, + B,D, + C,D,]

+Dy(B.+C,+D,)X,. (28)
Further, using Table 3, itis easily shown that
a=b=c=d=f=0 (29)
and
Awi = Awy = Aws = Awg = Aws = Awg = 0. (30)

With these simplifications (H2);, takes on the simple form

2 3 5 4 6 7 8

210 D D
[Hz/h]ll = 3\ D0 D
5/D D 0
z = l 2
(X.=+1/2), o o D (1)
6 D 0 D
7 D D 0
8 0
where D' is given by
D' =-iD. (32)
The eigenvalues of say the top 3 x 3 matrix given by
AN =XN=-D \=2D (33)
with eigenfunctions
1
=—112) —15)];
Y1) \/:EH ) = 15)]
1 1
=—12) —2|3) +15)]; =—=[2) +13) +|9)], 34
|2) \@[H 3) +15); [¥s) \/g{H 3) +15)) (34)

respectively. Note that (i) all the chemical shift information and diagonal dipolar
constants are contained in H,, and (i) the roots of H; are particularly simple, invol-
ving only flip-flop terms between the BBB spins alone. In this formulation of the
problem, it is evident the evolution of the density matrix is primarily dominated by
H,, with small but significant contributions due to H».
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8. Conclusions

It has been demonstrated that the calculation of the density matrix p(¢) can be
greatly simplified by sub-dividing H = H,; + H;, where H, is a suitable linear com-
bination of the constants of the motion. In particular, this technique can be used to
obtain closed form solutions for the eigenfunctions and eigenvalues of spin 1/2
ABC and XBCD spin systems. In particular, it has been shown that the effective size
of the M, matrix which needs to be considered is reduced from N x N to at least
(N —2) x (N —2), while for XBC... spin systems it is reduced to (N —4)
X (N — 4). As a result, the highest rank and highest/lowest order tensor operators
are constants of the motion under the action of H,. Further, by exploiting the fact
that 7, is a good quantum number, it is possible to block-diagonalize the H, matrix
into no more than 3 x 3 matrices, for 4 BC and XBCD spin systems.

In the following paper, it is shown how the results obtained above can be used
to obtain closed form expressions for the time dependence of high-order tensor
operators, without recourse to a full diagonalization of the Hamiltonian H.
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