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By choosing a suitable linear combination of the constants of the motion ~1, it is 
shown that the calculation of the density matrix p(t) can be simplified by subdividing the 
Hamiltonian 7-/into (7-/1 + 7-/2). In particular, this technique can be used to obtain closed 
form solutions for the eigenfunctions and eigenvalues of spin 1/2 ABC and XBCD spin 
systems, evolving in the presence of Zeeman offsets, scalar coupling and dipolar interac- 
tions. In general, the eigenvalues and eigenvalues of 7~1 are very transparent, while those 
of 7-/2 require more effort. Nevertheless, simplifications can be made. Firstly, the effec- 
tive size of the Hamiltonian matrix 7-/2 which needs to be considered, is reduced from 
N x N to at least ( N - 2 ) x  (N-2 ) ,  while for XBC.. .  systems it is reduced to 
(N - 4) x (N - 4). Secondly, the highest rank and highest/lowest order tensor operators 
available to the spin ensemble are constants of the motion under ~2. Finally, by exploit- 
ing the fact that ,7"~ is a good quantum number, it is possible to block-diagonalize the 7-[2 
matrix into no more than 3 x 3 matrices. 

1. I n t r o d u c t i o n  

The complex i ty  of  the m a t h e m a t i c s  required  to describe the evo lu t ion  o f  nuc lear  
ensembles,  increases rapid ly  wi th  the number  o f  in terac t ing  nuclei [1-5]. Thus  it is 
helpful  to seek ways o f  s implifying the a lgebra required for  coupled  spin 1 /2 nuclei 
evolving in the presence o f  Zeeman  offsets, dipole-dipole in teract ions ,  and  scalar  
coupl ing.  A step in this d i rect ion has been m a d e  by [6]. In a paper  on the p r o d u c t  
ope ra to r  descr ip t ion  o f  A B  and  A B X  spin systems, it was shown tha t  the calcula-  
t ion o f  the t ime dependen t  densi ty mat r ix  p(t) can be simplified,  by subdivid ing  the  
H a m i l t o n i a n  into  the fo rm 7 / =  7/1 + 7/2, where  7/1 and  7/2 c o mmu t e .  In such 
cases, the t ime evo lu t ion  of  the densi ty  ma t r ix  can be fac tor ised as 

p( t) = e-iTlt/li p(O)e +zTtt/ti 

e -iT-(2t/h Ie -i~lt/h p(O )e +i~I t/hi e+m2'/h, (1) 

enabl ing  the ca lcu la t ion  o f  the densi ty  mat r ix  p(t) to be carr ied out  in two separa te  
steps r a the r  t h a n  one. In practice,  this approach  is useful because (i) it a l lows the 
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identification of "constants of the motion", under ~ i  and 7-/2 taken separately, 
and (ii) the eigenvalues and eigenfunctions o f ~ l  and ~2 are often less complicated 
than those of T-L 

In this paper, an optimal subdivision of 7~ into ~1 and 7-/2, for ABC,  XBC,  
ABCD,  and XBCD,  etc., spin 1/2 spin systems is presented and discussed. In 
essence, 7-/1 is chosen to be a suitable linear combination of the constants of the 
motion of the Hamiltonian ~ .  It is demonstrated that (i) in the Zeeman representa- 
tion, ~1 is pure diagonal, and (ii) the effective size of the non-diagonal 7-/2 matrix is 
reduced from N x N to at least (N - 2) x (N - 2). In addition, it is shown that 
even the (N - 2) x (N - 2) 7-/2 matrix can be block diagonalized into still smaller 
sub-matrices, using the fact that J z  (= Az + Bz + C~ + . . .)  is a good quantum 
number. 

The structure of papers I and II is as follows. In this paper, the emphasis is placed 
on (i) the optimal subdivision o f ~  into ~1 + 7-/2, (ii) identification of constants of 
the motion, and (iii) block-diagonalization. In the following paper II, it is shown 
that it is possible to determine the evolution of high order multipolar states, without 
the need to diagonalize the full Hamiltonian 7-/. Both papers I and II can be seen as 
extensions of the work initiated in [6], to deal with higher numbers of multiply con- 
nected spin-1/2 systems. 

2. Genera l  considerat ions 

To obtain explicit forms for the time dependence of the density matrix p(t) of 
(1), it is necessary to choose a suitable basis set of operators [7]. In practice, there 
are several sets of operators that can be used for coupled spin-systems: Cartesian 
product operators [8], concatenated tensor operators [9], and unit spherical tensor 
operators [10]. For our purposes, we shall use the concatenated set of [9,10], 
denoted by 2r~(k). Here A and Q denote the rank and order of the operator, while k 
represents the spin-coupling scheme. Thus the term inside the square brackets of 
(1), can be rewritten in the form 

pl(t) = e-m't/hp(O)e +i~''/h = ~ ~'~p~(k, t)T~(k).  (2) 
AQ k 

In the energy representation, it is easily shown that the time dependent Fano 
coefficients [7] p~ (k, t) are given by 

= ~-~Jnl(t~(fc))tlm>(mlp(O)ln>e-i(e"-~)t/h. (3) 
n m  

Consequently, given the eigenvalues and eigenfunctions of 7-/1, it is a relatively 
straightforward matter to determine the Fano coefficients and so arrive at an expli- 
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cit form for Pl (t). Once this has been done, the full density matrix p(t) can be 
obtained, this time using the eigenvalues and eigenfunctions of 7-/2: 

p( t) = e-t3-12t/h pl ( t )e +m2t/h . (4) 

Thus the key to the calculation of the density matrix p(t) lies in the determination 
of eigenvalues and eigenvectors ofT-/1 and 7-/2. 

3. A three spin 1/2 scalar coupled ABC spin system 

First, we observe that if ['HI, 7-/2]_ = 0, it follows that both [~, ~ l ]_  = 0 and 
[~, ~2]_ = 0. Thus in order to construct a reasonable choice for say 7-/1 we seek the 
constants of the motion for the Hamiltonian 7-/. 

Consider a general ABC scalar coupled spin 1/2 spin system. In the decoupled 
representation, the Hamiltonian can be written in the form 

7-[ = h[AwAAz + ACOBB~ + AwcCz] + JABA" B + JAcA" C + JBcB" C.  (5) 

For such a Hamiltonian, it is easily shown that 

[As + B. + Ca, 7-/]_ = [ffz, 7-(]_= 0, (6) 

i.e. the total projection of the angular momentum along the z-axis ff~ is conserved. 
Further, given (6) it is easy to show that ,.7 2 is also a constant of the motion. 
Consequently, 

-- +.z + l - 

= [(AzBz + AzC~ + B.Cz), 7-/]_= 0, (7) 

where we have made use of the fact that (A2z + Bz 2 + C~ 2) = 3/4 for spin 1/2 nuclei. 
Thus we have now identified two constants of the motion (6) and (7). This suggests 
therefore that we set 

7-[1 = h[A&(A. + B~ + Ca)] + 3(A~Bz + AzC~ + BzC~), (8) 

where (i) 

A ~  = ½[A~A + A~B +/X~C] (9) 

and (ii) 

3 = ½[JAB + SAC + ]BC]. (10) 

With this choice ofT-/1 therefore 

7~2 = h[(/X~A - :x~)A.  + ( / X ~  - zX~)Bz + ( A ~ c  - A~)C~] 

+ (JABA" B - JAzBz) + ( J A c A - C  - 3AzC~) + (JBcB" C - JBzCz).  

(11) 
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N o t e  tha t  in choosing ~ l  we have been driven by the idea that  ~1 should  conta in  
the d o m i n a n t  terms in the Hamil tonian:  i.e., 7-/1 > 7-/2. 

In the Zeeman  representat ion 7-ll is diagonal,  so the calculat ion of  the densi ty 
matr ix  pl (t) inside the square brackets of  (1), presents no difficulties. On the other  
hand,  the calculat ion of  the eigenfunctions and the eigenvalues of  ~2 is more  com- 
plicated. Us ing  the labelling scheme and definit ions set out  in Table 1, we find 

1 2 3 4 5 6 7 8 

~ 2 / h  = 

0 0 0 0 0 0 0 0 

0 a +  Awl J~c 0 J~c 0 0 0 

0 JIBC b +/ko3 2 0 lAB 0 0 0 

0 0 0 C -- /kco 3 0 ,]tAB JtAc 0 

0 JIAC JtAB 0 C -1- Ao3 3 0 0 0 

0 0 0 J~/~ 0 b - Aco2 J~c 0 

0 0 0 fAC 0 JBC a -- AaJI 0 

0 0 0 0 0 0 0 0 

(12) 

No te  that  the first and last entries along the diagonal  in '7"~2 a r e  zero. For  such 
entries, the project ions o fAz ,  Bz, and Cz are all identical, and so bo th  the diagonal  
Z e e m a n  and scalar coupl ing terms vanish identically. This is also true of  all the 
entries in the first and  last rows, and the first and last columns,  since entries in these 
posi t ions would  cor respond to spin-flips which do not  conserve Jz .  Thus  two eigen- 
values of  ~2  are identically equal to zero, and the effective size of  the Hami l ton ian  
has been reduced f rom 8 x 8 to 6 x 6. This observat ion is readily generalized to 
ABC D,  A B C D E ,  etc., spin 1/2 systems. I f  the dimensions o f ~  are N x N, the effec- 
tive size of  7-/2 is reduced to (N - 2) x (N - 2), which allows us to draw a general  
conclusion.  The highest  rank tensor K with the h ighes t / lowest  order  Q = -_tzK is a 
cons tant  of  the m o t i o n  under  7-/2. For  the A B C  spin system, this would  cor respond  
to the opera tors  A + B + C +  and A _ B _ C _ ,  which have sole entries in the matr ix  posi- 
t ions (1,8) and  (8,1), respectively. 

Fur ther  progress can be made  by relabeling the rows and co lumns  of  (12), to 

Table 1 
Labelling scheme and definitions used in ~2 ofeq. (12) for the A BC spin system. 

a=~[JAB--)llh; b=½[JAc-)llh; c=½[JBc-)llh 
J=½[JAB+ JAc+ JI~c]; J'=J/(2h) 
a + b + c = O  
zXcol = (A~ -/Xcoc); /X~o2 = (A~ -/Xcos); Aw3 = (zXa5 -/XcoA) 
Aa5 = ½ [AwA + AwB + A,~c]; /Xcol + Aco2 + A~o3 = 0 

Labelling scheme: [AzBz Cz), i.e. 
l l )= [+½ +½ +½), 12)=1+½ +½ _!),: 13)=1+½ -½ +½),etc. 
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highlight the fact that J z  is a good quantum number.  Thus (12) is t ransformed to 

5r~ = 3/2 1/2 - 1/2 - 3/2 
I I 1 I 

1 2 3 5 7 6 4 8 

"]-~2/h = 

0 0 0 0 0 0 0 0 

0 a + Acol J'BC J'AC 0 0 0 0 

0 J'BC b + Aco2 J'A~ 0 0 0 0 

0 JIAC JtAB C + A w  3 0 0 0 0 

0 0 0 0 a - Awl  YBc J~c 0 

0 0 0 0 JtBC b -- Aco2 ,]'lAB 0 

0 0 0 0 J/AC .]tAB C -- /k~ 3 0 

0 0 0 0 0 0 0 0 

(13) 

which is now block diagonal with just two 3 × 3 matrices down the diagonal. Note  
that the two 3 × 3 matrices in (13) are simply related to each other in that the 
Zeeman terms change sign on going from/Tz = + 1/2 to - 1/2. 

We are now in a position to make two more observations. One, since ~2 is block 
diagonal in Jz ,  evolution under 7-(2 (and 7-fi) cannot change the order Q of  a given 
tensor operator T~(k).  For example, operators with Q = +2 can only evolve 
between "i'3~2 (k) and "F2, 2(k ) multipolar states. Two, since the dimensions of  the lar- 
gest matrix appearing in (13) is only 3 × 3, closed form expressions for the eigenva- 
lues and eigenfunctions of TY2 are guaranteed. Note also that the trace of  each of the 
two 3 x 3 matrices appearing in (13) is zero. In general, the 3 x 3 matrices take the 
form 

M =  /3 C , 

c + 9) 

which possesses the characteristic equation 

A 3 - 3 , A + e  = 0, 

where 

"r -- [(A 2 + + ca)  + + + /32) ] ,  

(14) 

(15) 

e = [(aC 2 +/3 B2) + (a +/3)(a/3 - A 2) - 2ABC].  (16) 

Thus standard methods can be used to obtain the eigenvalues, and hence the eigen- 
vectors. Of course, further simplifications can be made for A B  2 type spin systems, 
and a simple example is discussed below in the section 7. 
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Finally, we remark that the above treatment can be used to discuss the A B X  sys- 
tem. This can be achieved by setting C equal to X and the off-diagonal terms J~c 
and J~c in (12) equal to zero. For such systems therefore it is only necessary to diag- 
onalize two 2 x 2 matrices. However, as noted by [6] there is a better way of tackling 
the A B X  spin problem. 

The A B X  Hamiltonian can be divided into '7-/1 and 7-/2 where (i) 

"]'~1 ~- h[AG)AB(Az @ Bz)  -t- z~kO.)xXz] "t- JABAzBz -}- Jx(A= + Bz)Xz, (17) 

(ii) 

= h[(/X A - zX A,)A= + (zX B -/X AB)Bz] 

+ JAB(A" B - A=Bz) + 6Jx(Az - Bz)Xz (18) 

and (iii) 

L = ½(JAx + JBX); 6L  = ½(JAx -- JBX); A~AB = ½[AwA + AWB]. (19) 

Note that in writing (17) and (18), the off-diagonal terms in A .  X and B .  X have 
been dropped because such flip-flop terms do not conserve energy and are therefore 
strongly suppressed. With this approximation therefore, both (Az + Bz) and Xz, 
taken separately, are good quantum numbers. In practice, of course, both 
approaches must lead ultimately to the same results. However, for the A B X  spin 
system, the sub-division of(17) and (18) is optimal because 7-ll more closely reflects 
the dominant terms in the A B X  Hamiltonian. 

4. A four  spin 1/2 scalar coupled ABCD spin system 

Having made reasonable progress with the three spin 1/2 problem, it is natural 
to enquire how much further can we go. For the ABCD four spin assembly, the rele- 
vant 7-/and H1 are given by 

and 

7-[ = h[AWAAz + AWBBz + A w c C z  + AWDDz] 

+ (JABA " B + JAcA" C + JADA" D + JBcB" C + JBDB" D + JcDC" D) 

(20) 

~"~1 = h[Aa3(Az + Bz + C: + Dz)] 

+ J(AzBz + AzCz + AzDz + BzCz + BzDz + CzDz). (21) 

Once again, H1 is diagonal and presents no real difficulties. On the other hand, 7-/2 
contains both diagonal and off-diagonal terms. In block diagonal form we find 
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J'z = 1 
I 1 

2 3 5 9 

l 
a -t- Awl JcD JIBD JtAD 

JtBD JIBC d -~" moo 4 JtAB 

J'~,, J~c J',B g + A~7 

J Z ~ - - 1  

I I 

15 14 12 8 

@ a - Awl  Jc19 419 J~D 

Jb19 b -  ~,~o2 4 c  4 c  
4 D  4 C  d -- mo34 ,]lAB 

4 D  4 c  J'AB g -- ZX~7 

J'z = 0  
I I 
4 6 7 13 11 10 

@ 

c + A~o3 4 c  419 o ~19 J~,c 
J'Bc e + Aco5 J'CD J'AD 0 J'AB 
J'BD J'CD f "+" Ac°6 JtAC JtAB 0 

o J'~19 J'~c c -  ~,~o~ 4 c  J'~, 
• lad 0 J'aB J'BC e -  Aco5 J'CD 
:'AC JAB 0 J'B19 JbD f -  A¢°6 

(22) 

Thus 7-[2 is block diagonal in J z  consisting of  two 4 x 4, one 6 x 6, and two null 
1 x 1 matrices 5rz = +2 (not shown). The definitions of  the terms a, b, c, etc., and 
symmetries,  are summarized in Table 2. Note  that the definitions of  the coefficients 
a, b, c etc., for the A B C D  spin system (Table 2) differ f rom those of  the A B C  spin 
system (Table 1). 

Clearly, this method  can be extended to deal with higher numbers  of  connected 
spins. For  example, for five spins the (N - 2) x (N - 2) Hamil tonian  matr ix  7-/2 is 
reduced to two 5 x 5 and two 10 x 10 matrices, while for a six-spin system, 7-[2 is 
reduced to two 6 x 6, two 15 x 15, and one 20 x 20 matrices. It is obvious therefore 
that the required mathemat ics  increases steeply as more  spins are added to the 
nuclear ensemble. In fact, for spins in excess of  say 20, one is forced to resort to sta- 
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Table  2 
Definit ions and 
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symmetries for 7-/2 ofeq.  (22) for the ABCD spin system. 

ah=--3J  +½[JAB+ JAC+ JBc]; bh=--3-3 + I[JAB+ JAD+ 
Ch = - J  + ~ [JAB + JCD]; d~ = - ~ 3  + ½ [JAc + JAD + JCD] 
et~=--Y +½{&4C+ JeD]; f h = - - J  + I[JAD+ JBc] 
gh = - 33 + ½ {S~c + : ~  + ]c~] 
3 = ~[JAB +JAC + ]AD +Jsc + J ~  +Jc~] 
a + b + d + g = O  
c + e + f = O  
A~ = ¼ [AwA + AwB + 2X~c + Aw~] 
A W  1 = (At.~ --  A W D )  ; Ataj 2 = (Aa~  - A W C )  

Aw3 = 2Aa5 - (AaJc + AfMD) ; A w  4 = (Aot~ - A W B )  

Aw5 = 2A~5 - (AwB + AwD); A w  6 = 2Aa5 - (Aw8 + A w c )  
Aw7 = (A& - ~wA) 
Awl + Aw2 + ~xw4 + Aw7 = 0 
Aw3 + Am5 + Aco 6 = 2(AwA -- A~)  

tistical methods, as discussed, for example, by [11]. However, if one or more of the 
spins are X-spins, the mathematics simplifies considerably. For example, in the 
X B C D  system, all the off-diagonal terms fABfAC and Z~D in (21) can be placed 
equal to zero, and 7-/2 is reduced, essentially, to four 3 x 3 matrices. Thus analytical 
solutions in closed form are guaranteed. However, as noted earlier, it is better from 
the onset, to assume that the projections (t7.. + C~ + Dz) and Xz, along the B0 mag- 
netic field are good quantum numbers, as discussed in the next section. 

5. A four spin 1/2 scalar coupled XBCD spin system 

For ease of comparison with the A B C D  spin system, we set A equal to X, and 
write 7-[1 in the form 

7-/i = h[A~(B: + Cz + Dz) + AwxX~] + J[BzCz + B~D~ + CzDz] 

+ )x(Bz + C~ + Dz)X~ 

and 

(23) 

7-/2 = h[(AwAB~ + AwBC~ + A c z c D z )  - A&(B~ + Cz + Dz)] 

+ (JBcB" C - JBzCz) + (JBDB" D - JBzDz) + (JcDC" D - J C z D z )  

+ (JBJ( -- L ) n z X z  -t- ( J c x  - Jx)CzXz + ( JDx  -- L)DzXz ,  (24) 



G.J. Bowden, T. Heseltine / Coupledspin 1/2 systems. I 

where the definitions o f )  and )x can be found in Table 3. 
The resultant Hamil tonian for 7-/2 is block diagonal, and we find 

2 3 5 4 6 

361 

8 

2 
[ ~ 2 / h ] ~  3 

5 
(Xz = +½) 

4 

6 

7 

8 

+/',~o~ d'cv 4 z ,  

J'cD b + Aw2 J'Bc 

J'Bz) J'Bc d + Aco 4 

c + Aco3 

J'~ 
JtBc 

e + Aw5 
D 

f + AO36 
0 

9 10 11 13 12 14 

(25a) 

15 

9 
[']-{2/h]22 = 10 

(X. = _! )  11 

2 13 

12 

14 

15 

0 

f -  Ac°6 JCD JtBD 

fCD e -- Aw5 J~c 

J'8~ 4 c  c - zxoo3 

d - a ~ 4  "/~c 4 v  

J~c b -- Aco 2 JCD 

J~D fCD a -- Aw 

(25b) 

Table 3 
Definitions and symmetries for 7-[2 ofeq. (25) for the XBCD spin system. 

ah=i(J~c-J)-~(J~,,-J,~l; bh = ~- (J~,~ - 21 --~ (gx~ - 3x) 
ch = ~ (J'c~ 2) + ~ (&~ - 2x); dr, = ~ (:c,~ - 3) - ~ (Jx~ - J~) 
eli = ~(JBD 7].) +J(Jxc  - Jx);  f h  = ~(JBc -- 2) +~(JxD -- Jx) 

= ½[Jt~c + JBD + Jcl)]; ~lx = ½[Jxe + Jxc + JXD] 
a + b + d = O ; c + e + f  =O 
A W  I = m~d --  AO)D; A W  2 = A t . ~ -  A w  C 

Aw3 = -(Aa5 - AwB); Aco4 = Aa5 -- AwB 
/xco5 = -(Ao5- 2Xwc); Aw6 = --(Aa5 -/Xw~) 
/X~ = 1 [Acon + Awc +/Xw~] 
A w l + A w 2 + A w 4 = 0 ;  A w 3 + A w s + A w 6 = 0  
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where the coefficients a, b, c, etc., are summarized in Table 3. Note that the 
Hamiltonian 7-/z of (25a, b) is simpler than that of (22) in that (i) two more eigenva- 
lues are identically equal to zero, (ii) the required coefficients have been reduced 
from a ~ g  to a ~ f  and Awl ~ Act) 7 t o  Ao31 ~ AOd6, (iii) the coefficients 
Acol ~ Aw6 are simpler than those for the A B C D  spin system, and (iv) the sum rules 
of Table 3 are simpler than those of Table 2. It is also worth noting that the quantum 
states 18) and 19), with eigenvalues zero, correspond to (A, + B~ + Cz) = - 3 / 2  and 
(Az + Bz + C~) = +3/2,  respectively. Thus the triple quantum operators A_B_C_ 
and A+B+C+ for the three A B C  spins are constants of the motion under 7-/2. In 
essence, therefore, the removal of the spin-flop terms X±B~:, etc., has reduced the 
problem to that ofa  B C D  spin system. 

6. Dipo la r  coupled spin systems 

The method discussed above for scalar coupled spin systems can be easily 
adapted to deal with the case of dipolar coupled nuclei in the secular approxima- 
tion. For example, consider the A B  spin system, evolving under differing Zeeman 
offsets and a dipolar interaction. In this case the Hamiltonian takes the form 

7-[ = h[(AcjAAz + Aco~Bz] + DAB[AzBz - ¼(A+B - + B+A-)] ,  (26) 

where (i) 

DAB \ ~ (1 -- 3COS 2v~A~) , (27) 

(ii) tgAB is the angle made by rAB with the z-axis, and (iii) the large brackets appear- 
ing in (27) imply thermal averaging. Thus we see that in the secular approximation 
the projection of the angular momentum along the z- axis is conserved. Thus both 
(Az + Bz) and AzBz are constants of the motion. Note also that the structure of(26) 
is very similar to that which applies to the scalar coupled A B  spin system, but with 
minor differences. In the Hamiltonian ~1, the JAB terms are simply replaced by 
DAB, etc. However, in 7-[2 the diagonal JAB terms are simply replaced by DAB, etc., 
while the off-diagonal JAe terms in "7-/2 must be replaced by replaced by -(DAB/2) 
etc. Finally, we remark that if necessary it would be possible to deal with mixed sca- 
lar and dipole-dipole coupling interactions, simultaneously. 

7. A CH3 dipolar  coupled spin system 

As an example of the results described in sections 5 and 6, consider an X B B B  spin 
system where the dipolar coupling between the three B spins is identical. Thus 
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D B C  = DBD = DCD = D, DBX = Dcx = D D X  = Dx, and AWB ~- Aco C : Act) D 

= Aw. Thus,  the Hami l ton ian  7-gi takes the form 

7-/1 = h[Aw(Bz + Cz + D~) + AwxXz] + D[BzC~ + BzD~ + CzDz] 

+ Dx(Bz + Cz + Dz)X... (28) 

Fur ther ,  using Table 3, it is easily shown that  

a = b = c = d = f  = 0 (29) 

and  

aco 1 = Act) 2 -~- A033 = Aco 4 = ~co 5 = aco 6 = 0. 

With  these simplifications (7-/2)11 takes on the simple fo rm 

2 
[~-{2/h]l  1 = 3 

5 
(Xz = +1 /2 )  4 

6 

7 

8 

where D' is given by 

D' = -¼D. 

2 3 5 4 6 7 8 

0 D / D' 

D' 0 D' 

D' D' 0 

0 D / D' 

D' 0 D' 

D' D / 0 

0 

The eigenvalues of  say the top 3 x 3 matr ix  given by 

A1 = A2 = - D ' ;  A3 = 2D' 

(30) 

(31) 

(32) 

(33) 

with eigenfunct ions 

1 
I ~ )  = ~ [ 1 2 )  -15)1;  

--~5 [12) - 213) + 15)]; I%) = ~3[I  2) + 13) + 15)], (34) 

respectively. No te  that  (i) all the chemical shift in format ion  and diagonal  dipolar  
constants  are conta ined in ~ l ,  and (ii) the roots  o f ~ 2  are part icularly simple, invol- 
ving only flip-flop terms between the BBB spins alone. In this fo rmula t ion  of  the 
problem,  it is evident  the evolut ion of  the density matr ix  is pr imari ly  domina t ed  by 
~ l ,  with small but  significant contr ibut ions due to "7"~2, 
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8. Conc lus ions  

It has been demonstrated that the calculation of the density matrix p(t) can be 
greatly simplified by sub-dividing ~ = ~1 + 7-/2, where ~1 is a suitable linear com- 
bination of the constants of  the motion. In particular, this technique can be used to 
obtain closed form solutions for the eigenfunctions and eigenvalues of spin 1/2 
A B C  and XBCD spin systems. In particular, it has been shown that the effective size 
of the 7-12 matrix which needs to be considered is reduced from N x N to at least 
( N - 2 )  x ( N - 2 ) ,  while for X B C . . .  spin systems it is reduced to ( N - 4 )  
x (N - 4). As a result, the highest rank and highest/lowest order tensor operators 
are constants of the mot ion  under the action of  7-/2. Further,  by exploiting the fact 
that J z  is a good quantum number,  it is possible to block-diagonalize the ~2 matrix 
into no more than 3 x 3 matrices, for A B C  and XBCD spin systems. 

In the following paper, it is shown how the results obtained above can be used 
to obtain closed form expressions for the time dependence of high-order tensor 
operators, without recourse to a full diagonalization of the Hamiltonian ~ .  
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